Specifications for TFT-LCD Monitor (TENTATIVE)

MODEL COM20T2N52XSB

Customer's Approval	
Signature:	
Name:	
Section:	
Title:	
Date:	

ORTUSTECH

ORTUS TECHNOLOGY CO., LTD.
Approved by
Approved by
Checked by
Prepared by

ORTUS TECHNOLOGY CO.,LTD.

		SPECIF	ICATIONS № **TLM**	*	Issue Nov. 19, 2014
Version History	y				
Date	Page			Description	
Nov. 19, 2014	-		Tentative issue		
		<u> </u>			
		OF	RTUS TECHNO	LOGY CO.,LTD.	

Contents

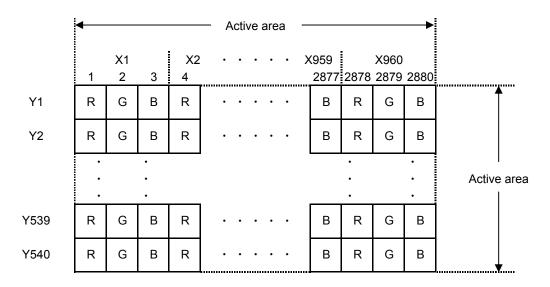
1. Applica	tion	 4
Outline	Specifications	
2.1	Features of the Product	 5
2.2	Display Method	 5
3. Dimens	sions and Shape	
3.1	Dimensions	 5
3.2	Outward Form	 6
3.3	Serial Label (S-LABEL)	 7
4. Pin Ass	signment	
4.1	Display Module / Backlight	 8
4.2	Transparent heater	 9
Circuit		
5.1	Block Diagram	 10
5.2	LED Circuit	 11
Absolut	te Maximum Rating	 12
7. Recom	mended Operating Conditions	
7.1	Display Module / Backlight	 12
7.2	Transparent heater	 12
8. Charac	teristics	
8.1	DC Characteristics	
	Display Module	 13
8.1.2	2 Backlight	 13
8.1.3	B Transparent heater	 14
8.2	AC Characteristics	
8.2.1	RGB Interface Block	 15
8.2.2	2 Serial Interface Block	 16
8.3	Input Timing Characteristics	 17
8.4	Driving Timing Chart	 18
8.5	Example of Driving Timing Chart	 19
9. Descrip	tion of Operation	
9.1	Serial Communication Timing	 20
9.2	Serial Communication Data	 20
9.3	Power on/off Sequence	 25
10. Optics		
10.1 O	ptical Characteristics	 26
10.2 Te	emperature Characteristics	 27
	of Judgment	
11.1 D	efective Display and Screen Quality	 28
11.2 S	creen and Other Appearance	 29
12. Reliabi	ity Test	 30
13. Packing	g Specifications	 32
14. Handlir	ng Instruction	
14.1 C	autions for Handling LCD panels	 33
14.2 Pi	recautions for Handling	 34
14.3 Pi	recautions for Operation	 34
14.4 St	orage Condition for Shipping Cartons	 35
14.5 Pi	recautions for Peeling off the Protective film	 35
APPENDI	Χ	 36

1. Application

This Specification is applicable to 5.12cm (2.0 inch) TFT-LCD monitor for non-military use.

- © ORTUS TECHNOLOGY makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and ORTUS TECHNOLOGY shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains ORTUS TECHNOLOGY's confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of ORTUS TECHNOLOGY'S confidential information and copy right.
- © If Purchaser intends to use this Products for an application which requires higher level of reliability and/or safety in functionality and/or accuracy such as transport equipment (aircraft, train, automobile, etc.), disaster-prevention/security equipment or various safety equipment, Purchaser shall consult ORTUS TECHNOLOGY on such use in advance.
- This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment.
- It must be noted as an mechaniacl design manner, especial attention in housing design to prevent arcuation/flexureor caused by stress to the LCD module shall be considered.
- ORTUS TECHNOLOGY assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification.
- © ORTUS TECHNOLOGY is not responsible for any nonconformities and defects that are not specified in this specifications.
- Of any issue arises as to information provided in this Specification or any other information, ORTUS TECHNOLOGY and Purchaser shall discuss them in good faith and seek solution.
- ORTUS TECHNOLOGY assumes no liability for defects such as electrostatic discharge failure occurred during peeling off the protective film or Purchaser's assembly process.
- ① This Product is compatible for RoHS directive.

Object substance	Maximum content [ppm]
Cadmium and its compound	100
Hexavalent Chromium Compound	1000
Lead & Lead compound	1000
Mercury & Mercury compound	1000
Polybrominated biphenyl series (PBB series)	1000
Polybrominated biphenyl ether series (PBDE series)	1000

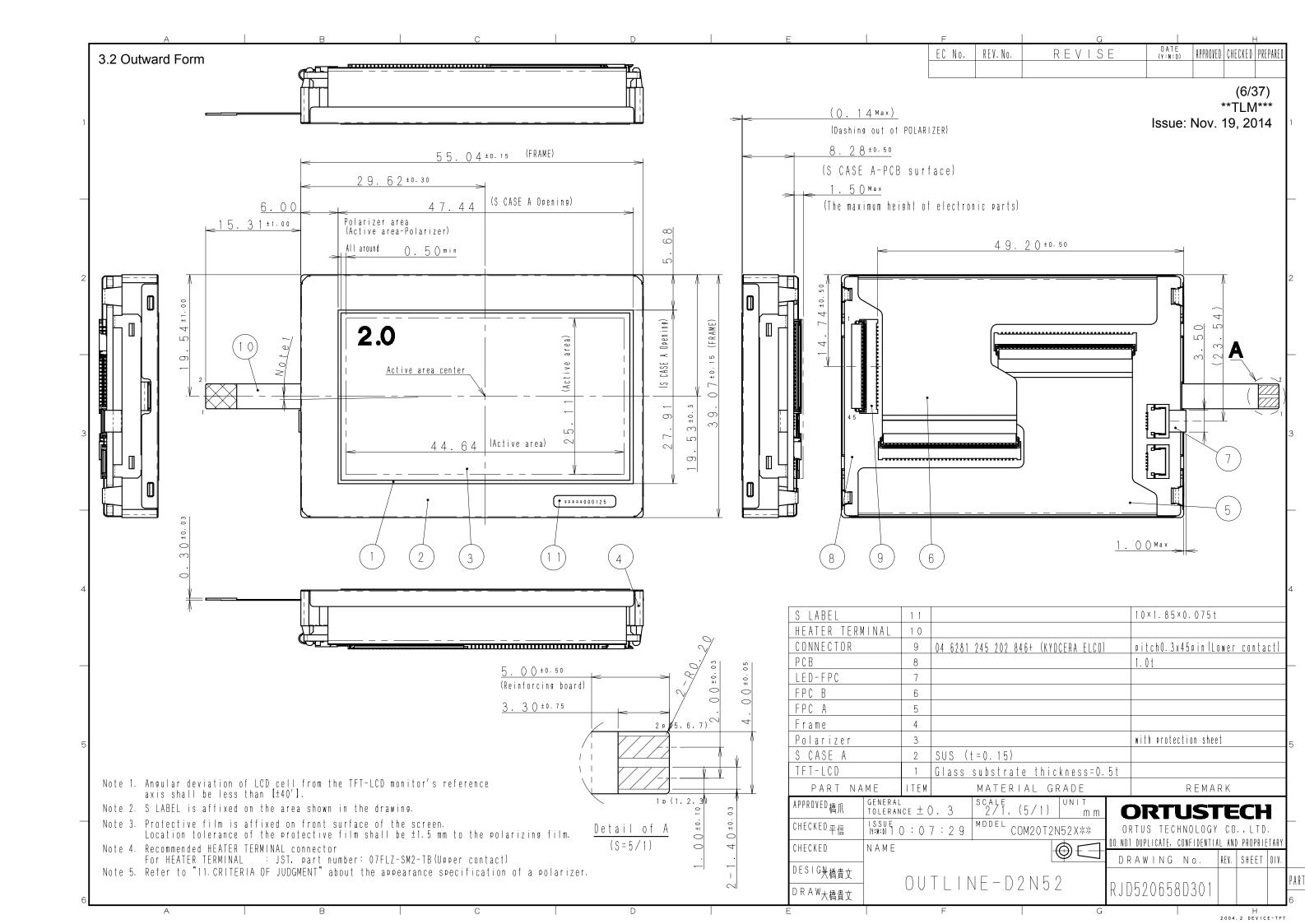

2. Outline Specifications

2.1 Features of the Product

- 2.0 inch diagonal display, 2,880 [H] x 540 [V] dots.
- RGB 8-bit 16,777,216 colors display capability.
- Built in Timing generator (TG), Built-in power supply circuit, Counter-electrode driving circuit.
- Long life & high brightness LED back-light
- With transparent heater for response speed improvement at low temperature

2.2 Display Method

Items	Specifications	Remarks
Display type	TN type 16,777,216 colors.	
	Transmissive type, Normally white	
Driving method a-Si TFT Active matrix		
	Line-scanning, Non-interlace	
Dot arrangement	RGB stripe arrangement	Refer to "Dot arrangement"
Signal input method	8-bit RGB, parallel input.	
Backlight type	Long life & High bright white LED.	


Dot arrangement (When "S LABEL" on the front case is placed at the lower right)

3. Dimensions and Shape

3.1 Dimensions

Items	Specifications	Unit	Remarks
Outline dimensions	55.04[H] × 39.07[V] × 9.78[D]	mm	
Active area	44.64[H] × 25.11[V]	mm	5.12cm diagonal
Number of dots	2,880[H] × 540[V]	dot	
Dot pitch	15.5[H] × 46.5[V]	μm	
Surface hardness of the polarizer	3	Н	Load:2.0 N Angle:45 degrees
			Criteria:JIS-K5600
Weight	24.5	g	

ORTUS TECHNOLOGY CO.,LTD.

3.3 SERIAL LABEL (S-LABEL)

1) Display Items

S-label indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits).

* Contents of Display

*	*	****	*****
_	_		
а	b	С	d

	Contents of display				
а	The least significant	digit of manufacture ye	ar		
b	Manufacture month Jan-A May-E Sep-I				
		Feb-B	Jun-F	Oct-J	
		Mar-C	Jul-G	Nov-K	
		Apr-D	Aug-H	Dec-L	
С	Model code 20FXB (Made in Japan) 20FYB (Made in Malaysia)				
d	Serial number	•			

- * Example of indication of Serial label (S-label)
- ·Made in Japan

5G20FXB000125

means "manufactured in July 2015, 2.0" FX type, B specifications, serial number 000125"

· Made in Malaysia

5G20FYB000125

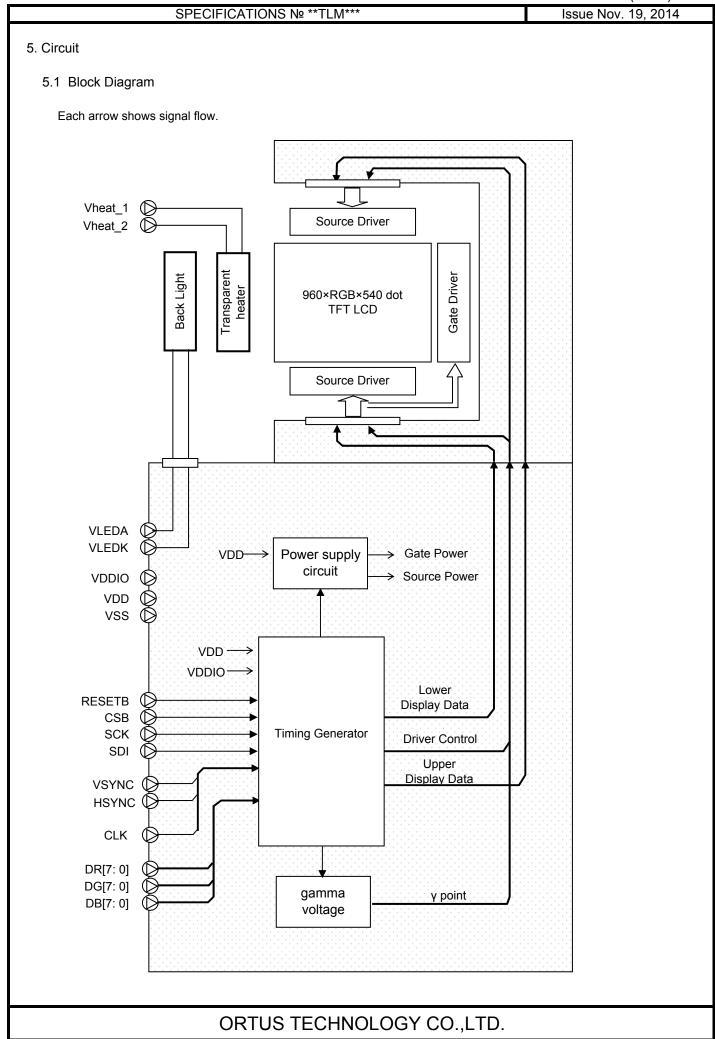
means "manufactured in July 2015, 2.0" FY type, B specifications, serial number 000125"

2) Location of Serial Label (S-label) Refer to 3.2 "Outward Form".

4. Pin Assignment

4.1 Display Module / Backlight

No.	Symbol	Function	Signal voltage	
1	VLEDA	Backlight power supply input.(anode side)		
2	VLEDA	Backlight power supply input.(anode side)		
3	VLEDK	Backlight power supply input.(cathode side)		
4	VLEDK	Backlight power supply input.(cathode side)		
5	VSS	GND.		
6	DR7	Display data(R).	VDDIO	
7	DR6	00h: Black		
8	DR5	DR0:LSB DR7:MSB		
9	DR4			
10	DR3			
11	DR2			
12	DR1			
13	DR0			
14	VSS	GND.		
15	DG7	Display data(G).	VDDIO	
16	DG6	00h: Black		
17	DG5	DG0:LSB DG7:MSB		
18	DG4			
19	DG3			
20	DG2			
21	DG1			
22	DG0			
23	VSS	GND.		
24	DB7	Display data(B).	VDDIO	
25	DB6	00h: Black		
26	DB5	DB0:LSB DB7:MSB		
27	DB4			
28	DB3			
29	DB2			
30	DB1			
31	DB0			
32	VSS	GND.		
33	CLK	Clock signal.	VDDIO	
34	VSS	GND.		
35	HSYNC	Horizontal sync signal.	VDDIO	
36	VSYNC	Vertical sync signal.	VDDIO	
37	RESETB	Reset signal.(Low: reset Hi: normal)	VDD	
38	SCK	Clock input for serial communication. Latching data at the rising edge.	VDD	
39	SDI	Data input for serial communication.	VDD	
40	CSB	Chip select input for serial communication. (Low active)	VDD	
41	VSS	GND.		
42	VDDIO	Power supply for IO input.	VDDIO	
43	VDD	Power supply input.	VDD	
44	VDD	Power supply input.	VDD	
45	VDD	Power supply input.	VDD	


- Used connector: KYOCERA Connector Products CO., LTD. 6281 series [04 6281 245 202 846+]
- Please refer to the section "3.2 Outward Form" for pin terminal order.
- The terminals of the connector (04 6281 245 202 846+) are plated with Au. So, the terminals of the FPC are desirably plated with Au.

ORTUS TECHNOLOGY CO.,LTD.

4.2 Transparent heater

No.	Symbol	Function
1	Vheat_1	Positive Voltage Input for Transparent Heater.
2	Vheat_1	Positive Voltage Input for Transparent Heater.
3	Vheat_1	Positive Voltage Input for Transparent Heater.
4	NC	NC.
5	Vheat_2	Negative Voltage Input for Transparent Heater.
6	Vheat_2	Negative Voltage Input for Transparent Heater.
7	Vheat_2	Negative Voltage Input for Transparent Heater.

- Used connector: J.S.T. CO., LTD. 07FLZ series 07FLZ-SM2-TB
- Please refer to the section "3.2 Outward Form" for pin terminal order.
- The terminals of the connector (07FLZ-SM2-TB) are plated with Au. So, the terminals of the FPC are desirably plated with Au.

	SPECIFICATIONS № **TLM***	(11/37) Issue Nov. 19, 2014
5.2 LED Circuit		
VLEDA ()		
VLEDK ()		
	ORTUS TECHNOLOGY CO.,LTD.	

6. Absolute Maximum Rating

VSS=0V

Item	Symbol	Condition	Ra	ting	Unit	Applicable terminal
			MIN	MAX		
Supply voltage 1	VDD		-0.3	3.7	V	VDD
Supply voltage 2	VDDIO		-0.3	3.7	V	VDDIO
Input voltage for logic 1	VI1		-0.3	VDD+0.3	V	RESETB,CSB,SCK, SDI
Input voltage for logic 2	VI2		-0.3	VDDIO+0.3	V	VSYNC,HSYNC,CLK, DR[7:0],DG[7:0],DB[7:0]
LED forward current	IL		_	40	mA	VLEDA-VLEDK
Heater Power Rating	PR heat		_	1.8	W	Vheat 1-Vheat 2
Storage temperature range	Tstg		-30	80	°C	

7. Recommended Operating Conditions

7.1 Display Module / Backlight

VSS=0V

Item	Symbol	Condition		Rating		Unit	Applicable terminal
	-		MIN	TYP	MAX		
Supply voltage 1	VDD		3.0	3.3	3.4	V	VDD
Supply voltage 2	VDDIO		1.7	1.8	3.4	V	VDDIO
Input voltage for logic 1	VI1		0	_	VDD	V	RESETB,CSB,SCK, SDI
Input voltage for logic 2	VI2		0	_	VDDIO	V	VSYNC,HSYNC,CLK, DR[7:0],DG[7:0],DB[7:0]
Operating temperature range	-		-20	25	70	°C	Panel surface temperature

7.2 Transparent heater

Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
Resistance between terminals	R heat		18.2	22.5	26.8	Ohm	Vheat_1-Vheat_2
Input voltage for heater	VIL				6	V	
Operational temperature	Тор		-20	25	70	°C	Panel surface temperature

Note: Please use COM20T2N52XSB on the condition of that panel surface temperature is 70 °C or less. (Don't use COM20T2N52XSB on the condition of that panel surface temperature is over 70 °C.)

8. Characteristics

8.1 DC Characteristics

8.1.1 Display Module

(Unless otherwise noted, Ta=25 °C,VDD=3.3V,VDDIO=1.8V,VSS=0V)

			(., ,		01,100,100 01)
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
Input voltage for logic 1	VIH 1		0.8VDD	_	VDD	V	RESETB,CSB,SCK,SDI
	VIL 1		0	_	0.2VDD	V	
Input voltage for logic 2	VIH 2		0.8VDDIO	-	VDDIO	V	VSYNC,HSYNC,CLK, DR[7:0],DG[7:0],DB[7:0]
	VIL 2		0	_	0.2VDDIO	V	
Operating Curren	IDD	fCLK=37.1MHz Color bar display	_	270	540	mA	VDD
	IDDIO		_	7	14	mA	VDDIO
Standby Current	IDDs	Input signal : const R02h PSAVE=0	_	50	100	mA	VDD
	IDDIOs		_	6	12	mA	VDDIO

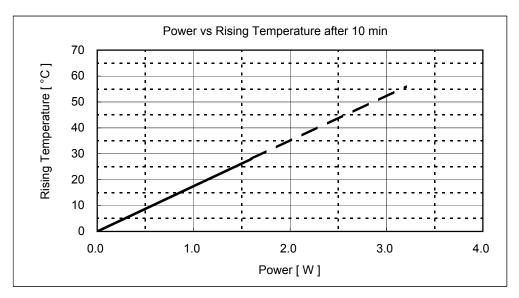
8.1.2 Backlight

Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
LED forward	IL		_	25	40	mA	VLEDA-VLEDK
current							
LED forward	VL	Ta=25 °C,	=	11.0	12.6	V	
voltage		IL=25mA					
Estimated	LL	Ta=25 °C,	_	15000	_	hrs	
Lifetime of LED		IL=25mA Note					

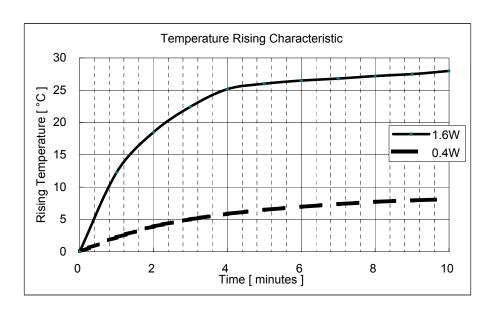
Note: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.

- This figure is given as a reference purpose only, and not as a guarantee.
- This figure is estimated for an LED operating alone.
 As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature.
- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the lifetime significantly.

8.1.3 Transparent heater


Measurement Condition

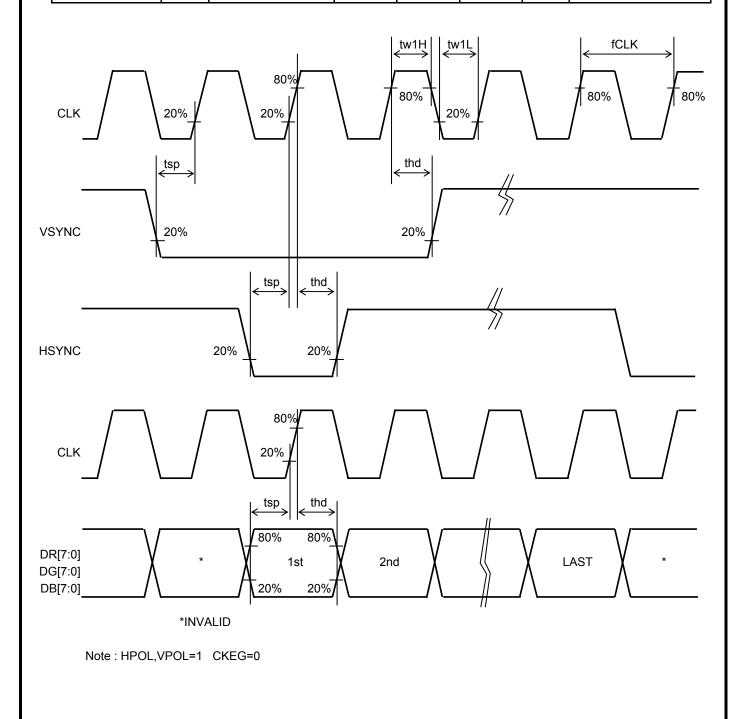
State of monitor The influence of convection is not received in the temperature chamber.


Measuring instruments: KEYENCE FT-H10 / FT-50

Backlight: IL=25mA Measured temperature: Ta=25 °C

Item	Symbol	Condition		Rating		Unit	
			MIN	TYP	MAX		
Rising	RT	view center, after 10minutes		17.5		C/W	Reference value
temperature							Refer to Figure below
Diging Time	Trt	at 1.8W		11		minutes	Reference value
Rising Time		to 0.9 x (Saturated temperature)					Refer to Figure below
Temperature	U t	at 1.8W after 30 minutes		80		%	Reference value
uniformity		9 point in view area					

Note: Please use COM20T2N52XSB on the condition of that panel surface temperature is 70 °C or less. (Don't use COM20T2N52XSB on the condition of that panel surface temperature is over 70 °C.)

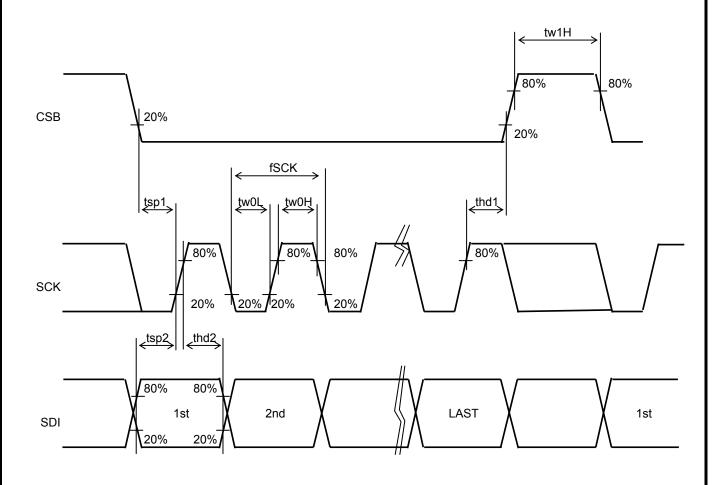


8.2 AC Characteristics

8.2.1 RGB Interface Block

(Unless otherwise noted, Ta=25 °C,VDD=3.3V,VDDIO=1.8V,VSS=0V)

Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
CLK frequency	fCLK		_	37.1	45	MHz	CLK
CLK Low period	tw1L		3	_	_	ns	CLK
CLK High period	tw1H		3	_	=	ns	CLK
Setup time	tsp		7	ı		ns	CLK, DR[7:0],DG[7:0],DB[7:0],
Hold time	thd		7	_	_	ns	HSYNC,VSYNC



ORTUS TECHNOLOGY CO.,LTD.

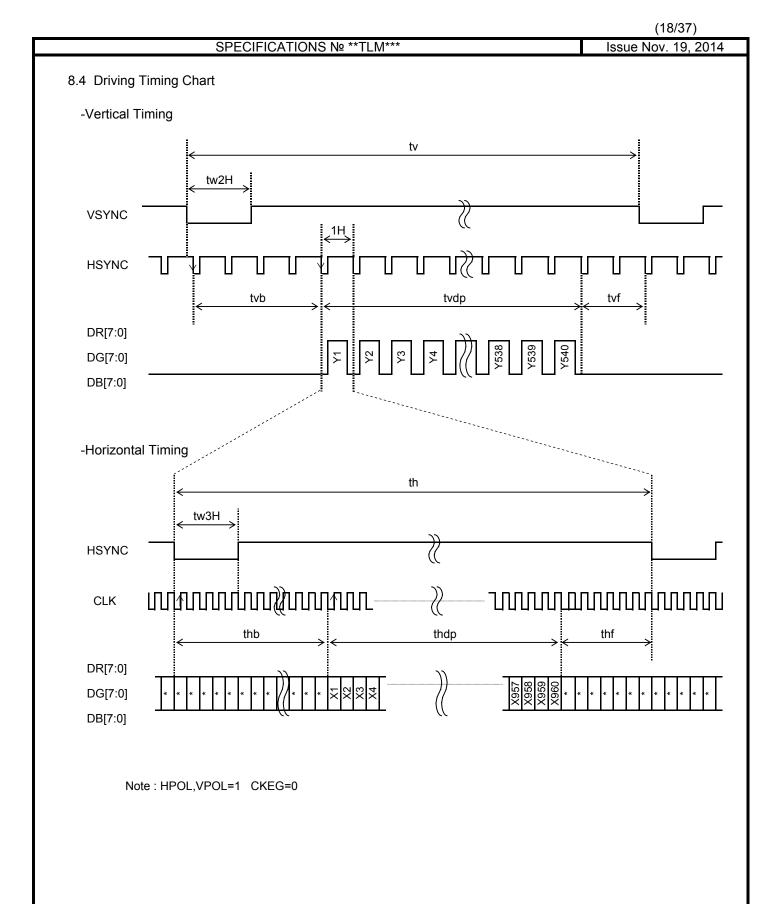
8.2.2 Serial Communication Block

(Unless otherwise noted, Ta=25 °C,VDD=3.3V,VDDIO=1.8V,VSS=0V)

			(0111000001110)	CI WICE HOLES	<u>a, ra 20 0</u>	, , , , , , , , , , , , , , , , , , , ,	0 V , V D D 10 - 1.0 V , V 0 0 - 0 V)
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
SCK pulse frequency	fSCK		1	5	10	MHz	SCK
SCK pulse Low period	tw0L		20	_	_	ns	SCK
SCK pulse High period	tw0H		20	_	_	ns	SCK
CSB pulse High period	tw1H		20	_	_	ns	CSB
CSB setup time	tsp1		20	_	_	ns	CSB,SCK
CSB hold time	thd1		20	_	_	ns	CSB,SCK
SDI setup time	tsp2		20	_	_	ns	SDI,SCK
SDI hold time	thd2		20	_	_	ns	SDI,SCK

SPECIFICATIONS № **TLM***

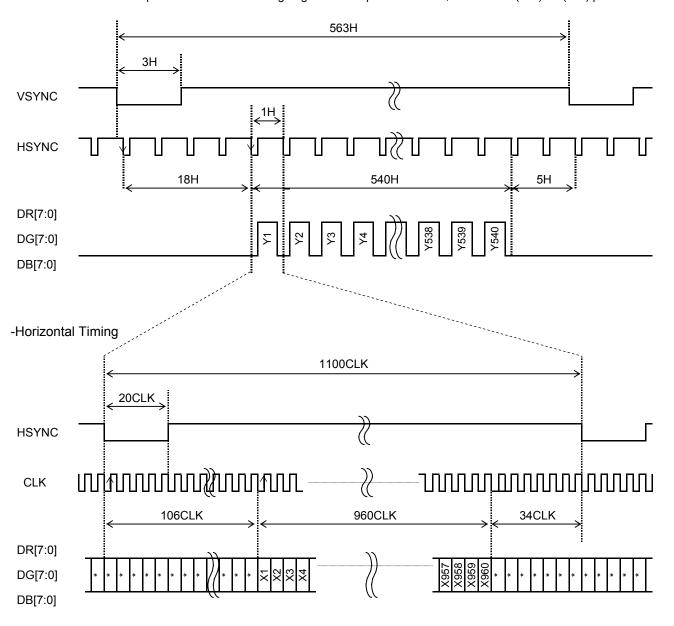
Issue Nov. 19, 2014


8.3 Input Timing Characteristics

Item	Symbol		Rating		Unit	Applicable terminal
		MIN	TYP	MAX		
CLK frequency	fCLK		37.1	45	MHz	CLK
VSYNC Frequency Note	fVSYNC	48	59.9		Hz	VSYNC
Number of Frame Line	tv	559	563		Н	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	2	3		Н	
Vertical Back Porch	tvb	17	18		Н	VSYNC,HSYNC,
Vertical front Porch	tvf	2	5		Н	DR[7:0],DG[7:0],DB[7:0]
Vertical Display Period	tvdp	=	540	_	Н	
HSYNC frequency	fHSYNC		33.8	35.0	KHz	HSYNC
HSYNC Cycle	th	1044	1100		CLK	HSYNC,CLK
HSYNC Pulse Width	tw3H	5	20		CLK	
Horizontal Back Porch	thb	56	106		CLK	HSYNC,CLK,
Horizontal front Porch	thf	28	34		CLK	DR[7:0],DG[7:0],DB[7:0]
Horizontal Display Period	thdp		960	_	CLK	

Note: Above input timing characteristics is standard.

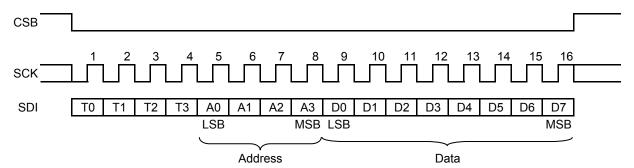
Please check carefully display quality,


if COM20T2N52XSB is operated on out of standard condition.

8.5 Example of Driving Timing Chart

-Vertical Timing

In case of that the period from VSYNC falling edge to data input start is 18H, set VBP=18(dec)=12(hex) please.


Note: HPOL, VPOL=1 CKEG=0

9. Description of Operation

9.1 Serial Communication Timing

After input signal of CSB drops from Hi to Lo, the Shift Resister loads 16 bits of serial data from SDI at the rising edge of the input signal of SCK.

When loaded SDI data during the low period of CSB is less than 16 bits, all loaded data are discarded . When loaded SDI data during the low period of CSB is 16 bits or more, the last read of 16 bits is used . Serial Communication Control Block is configurable at any time normal operation mode and standby mode as it is completely independent from other circuit run by CLK in the monitor.

9.2 Serial Communication Data

	T0-T3	A0 A1	A2 A3	D0	D1	D2	D3	D4	D5	D6	D7
DOOL		0 0	0 0	VBP0	VBP1	VBP2	VBP3	VBP4	VBP5	VBP6	VBP7
R00h			initial	0	1	1	1	1	0	0	0
R01h		1 0	0 0	HBP0	HBP1	HBP2	HBP3	HBP4	HBP5	HBP6	HBP7
KUIII			initial	0	1	1	1	1	0	0	0
R02h		0 1	0 0	UDB	LRB	-	PSAVE	HPOL	VPOL	CKEG	TEST
110211			initial	0	0	0	0	1	1	0	0
R03h		1 1	0 0	HCKNMB0	HCKNMB1	HCKNMB2	HCKNMB3	HCKNMB4	HCKNMB5	HCKNMB6	HCKNMB7
110011			initial	1	1	0	0	1	0	0	0
R04h		0 0	1 0								
110-111			initial								
R05h		1 0	1 0								
			initial								
R06h		0 1	1 0								
			initial								
R07h		1 1	1 0								
	0000		initial								
R08h		0 0	A								
			initial								
R09h		1 0	0 1		•••••		•••••				
			initial								
R0Ah		0 1	0 1		•••••		•••••				
		414	initial	TDD0	TDD4	TDD0	TDD0	TDD4	TDDE	TDDC	TDD7
R0Bh		111	0 1	TDR0	TDR1	TDR2	TDR3	TDR4	TDR5	TDR6	TDR7
			initial	0 TDG0	0 TDG1	0 TDG2	0 TDG3	0 TDG4	0 TDG5	0 TDG6	0 TDG7
R0Ch		0 0	4d	0	0	0	0	0	0	0	0
		1 0	initial	TDB0	TDB1	TDB2	TDB3	TDB4	TDB5	TDB6	TDB7
R0Dh		110	<u>initial</u>	0	0	0	0	0	0	0	0
		0 1	1 1	TLINE	TPIX	TNINE	TCENT	TWAK	TRON	TGON	TBON
R0Eh		<u> </u>	I'.I' initial	0	0	0	0	0	0	0	0
\vdash		1 1	1 1	U	0	0	0	U	0	U	
R0Fh		l	initial						•••••		
		!	iiiiiai								

SPECIFICATIONS № **TLM*** Issue Nov. 19, 2014

(1) R00h: Vertical Back Porch Period

A 0		A 2	A 3	D0	D1	D2	D3	D4	D5	D6	D7
	_	_	_								
0	0	0	0	VBP0	VBP1	VBP2	VBP3	VBP4	VBP5	VBP6	VBP7

VBP[7:0] Setting numbers of HSYNC from the falling edge of VSYNC to valid RGB data (When VPOL=1). When VPOL=0, it becomes a count from the rising edge of VSYNC.

This command is executed by VSYNC immediately after the rising the edge of CSB.

(2) R01h: Horizontal Back Porch Period

A 0		A 2	A 3	D0	D1	D2	D3	D4	D5	D6	D7
1	0	0	0	HBP0	HBP1	HBP2	HBP3	HBP4	HBP5	HBP6	HBP7

HBP[7:0] Setting numbers of CLK from the falling edge of HSYNC to valid RGB data (When HPOL=1). When HPOL=0, it becomes a count from the rising edge of HSYNC.

This command is executed by VSYNC immediately after the rising the edge of CSB.

(3) R02h: Interface Mode

A A A A 0 1 2 3	D0	D1	D2	D3	D4	D5	D6	D7
0 1 0 0	UDB	LRB	-	PSAVE	HPOL	VPOL	CKEG	TEST

UDB Setting for vertical flip display. The selected display mode is carried out by VSYNC.

0: Normal Display

1 : Vertical Flip Display (Up/Down)

LRB Setting for horizontal flip display. The selected display mode is carried out by VSYNC.

0: Normal Display

1 : Horizontal Flip Display (Right/Left)

PSAVE Setting into Standby mode. It is carried out by the rising edge of CSB.

0 : Standby mode

Power consumption is significantly reduced in standby mode .

Serial data can be received by serial communication block even in standby mode.

1: Normal operation

HPOL Setting the polarity of HSYNC. It is carried out by the rising edge of CSB.

0 : HSYNC is High active (Normally Low)

1: HSYNC is Low active (Normally High)

VPOL Setting the polarity of VSYNC. It is carried out by the rising edge of CSB.

0: VSYNC is High active (Normally Low)

1: VSYNC is Low active (Normally High)

CKEG Setting the timing of data read. It is carried out by the rising edge of CSB.

0 : The data is read on the rising edge of CLK

1: The data is read on the falling edge of CLK

TEST The TEST pattern is inserted in the display image. It is carried out by VSYNC.

0: Normal Display

1: The TEST pattern is inserted

The inserted TEST pattern is specified by register R0Bh-R0Eh.

(4) R03h: Setting 1H period

A 0	A 1	A 2	A 3	D0	D1	D2	D3	D4	D5	D6	D7
1	1	0	0	HCKNMB0	HCKNMB1	HCKNMB2	HCKNMB3	HCKNMB4	HCKNMB5	HCKNMB6	HCKNMB7
				1	1	0	0	1	0	0	0

HCKNMB[7:0] Setting number of CLKs per 1H period

The setting figure is calculated by the following expressions.

The expressions omit the figure after the decimal fractions.

HCKNMB = (number of CLK per 1H period - 1024) ÷ 4

Example1. In case of Number of 1H period = 1100

 $HCKNMB[7:0] = (1100 - 1024) \div 4 = 19(dec) = 0001_0011(bin)$

Example2. In case of Number of 1H period = 1430

 $HCKNMB[7:0] = (1430 - 1024) \div 4 = 101.5 \rightarrow 101(dec) = 0110_0101(bin)$

(5) R0Bh: R Data of TEST pattern (valid when R02h[D7:TEST] =1)

A 0		A 2		D0	D1	D2	D3	D4	D5	D6	D7
1	1	0	1	TDR0	TDR1	TDR2	TDR3	TDR4	TDR5	TDR6	TDR7
			ľ	0	0	Λ	Λ	Ω	Λ	Ω	Ω

TDR[7:0] Setting for Red data of TEST pattern when R02h[D7:TEST]=1. It is carried out by VSYNC.

(6) R0Ch: G Data of TEST pattern (valid when R02h[D7:TEST] =1)

A 0	A 1	A 2		D0	D1	D2	D3	D4	D5	D6	D7
0	0	1	1	TDG0	TDG1	TDG2	TDG3	TDG4	TDG5	TDG6	TDG7
			ſ	0	0	0	0	0	0	0	0

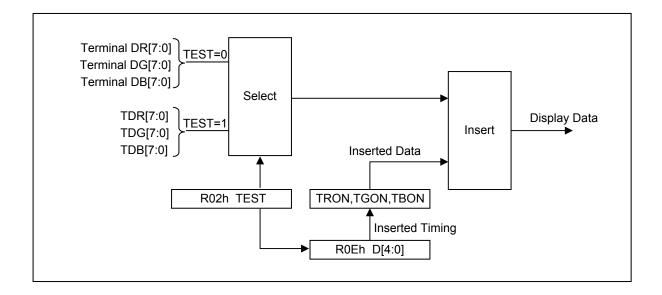
TDG[7:0] Setting for Green data of TEST pattern when R02h[D7:TEST]=1. It is carried out by VSYNC.

(7) R0Dh: B Data of TEST pattern (valid when R02h[D7:TEST] =1)

A 0		A 2		D0	D1	D2	D3	D4	D5	D6	D7
1	0	1	1	TDB0	TDB1	TDB2	TDB3	TDB4	TDB5	TDB6	TDB7
				0	0	0	0	0	0	0	0

TDB[7:0] Setting for Blue data of TEST pattern when R02h[D7:TEST]=1. It is carried out by VSYNC.

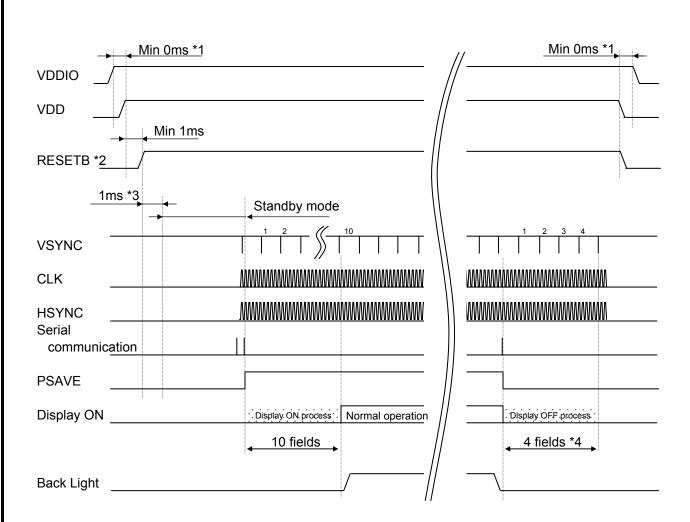
TGON ON/OFF of a GREEN pixel of the TEST pattern . It is carried out by VSYNC .


0 : G OFF (DG[7:0]=00h) 1 : G ON (DG[7:0]=FFh)

TBON ON/OFF of a BLUE pixel of the TEST pattern . It is carried out by VSYNC .

0 : B OFF (DB[7:0]=00h) 1 : B ON (DB[7:0]=FFh) SPECIFICATIONS № **TLM***

Issue Nov. 19, 2014


- The logic of each test signal is as follows.

SPECIFICATIONS № **TLM***

Issue Nov. 19, 2014

9.3 Power ON/OFF sequence

- *1 Please set Power ON order VDDIO -> VDD or VDDIO = VDD. Please set Power OFF order VDD -> VDDIO or VDD = VDDIO.
- *2 Please set RESETB=Hi, 1ms or more later after VDD turns to ON.
- *3 Please input NO signal for 1ms after RESETB=Hi.

 Please fix all signals (except RESETB) to Hi or Lo for 1ms after RESETB=Hi.

 Please input signals more than 1ms later after RESETB=Hi.
- *4 Display OFF process is 4 fields.

 Please keep to input HSYNC, VSYNC and clk for display OFF process.

10. Optics

10.1 Optical Characteristics

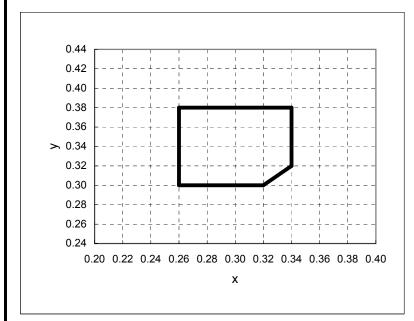
< Measurement Condition >

Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS) ,

EZcontrast160D (ELDIM)

Driving condition: Typical Rating of "7. Recommended Operating Conditions".

Optimized VCOMDC


Backlight: IL=25mA Measured temperature: Ta=25°C

	Item	Symbol	Condition	MIN	TYP	MAX	Unit	Note No.	Remark
Response time	Rise time	TON	[Data]= (FF)h→(00)h	_	(5)		ms	1	*
Resp	Fall time	TOFF	[Data]= (00)h→(FF)h	_	(12)		ms		
Co	ontrast ratio	CR	[Data]= (FF)h/(00)h	(120)	(200)	ı		2	
<u></u>	Left	θL	[Data]=	(45)	_		deg	3	*
Viewing angle	Right	θR	(FF)h/(00)h	(45)	_		deg		
/iev	Up	φU	CR≧(10)	(45)	_		deg		
	Down	φD		(45)	_	_	deg		
\/\hite	e Chromaticity	Х	[Data]=(FF)h	White ch	romaticit	y range		4	
VVIIIC	Cilionaticity	у							
Burn-in No noticeable burn-in images should be observed after 2 hours of window pattern dis				ıfter	5				
Center brightness [[[Data]=(FF)h	(175)	(250)		cd/m ²	6	
Brigh	tness distributi	on	[Data]=(FF)h	(70)	_	_	%	7	

^{*} Note number 1 to 7: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics".

^{*} Measured in the form of LCD module.

SPECIFICATIONS № **TLM***

[White Chromaticity Range]

Х	у
(0.34)	(0.32)
(0.34)	(0.38)
(0.26)	(0.38)
(0.26)	(0.30)
(0.32)	(0.30)

White Chromaticity Range

10.2 Temperature Characteristics

< Measurement Condition >

Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS)

Driving condition: Typical Rating of "6. Recommended Operating Conditions".

Optimized VCOMDC

IL=25mA

Backlight:

Į.	tom		Specif	ication	Remark
ľ	Item		Ta=-10°C	Ta=70° C	Kemark
Contr	Contrast ratio		40 or more	40 or more	
Response time	Rise time	TON	200 msec or less	30 msec or less	*
response time	Fall time T		300 msec or less	50 msec or less	*
Displa	y Quality		No noticeable display d should be observed.	lefect or ununiformity	Use the criteria for judgment specified in the section 11.

Measured in the form of LCD module.

11. Criteria of Judgment

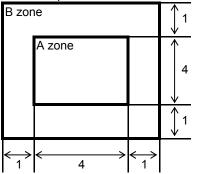
11.1 Defective Display and Screen Quality

Test Condition: Observed TFT-LCD monitor from front during operation with the following conditions

Driving Signal Raster Pattern (RGB in monochrome, white, black)

Signal condition [Data]: (FF)h, (97)h, (00)h (3 steps)

Observation distance 30 cm
Illuminance 200 to 350 lx
Backlight IL=25mA


De	efect item		Defect content	Criteria
	Line defect	Black, White or colo	r line, 5 or more neighboring defective dots.	Not exists
_		Uneven brightness	due to defective	Refer to table 1
Quality		TFT or CF, or dust i	s counted as dot defect	
g	D. ((brighter dot, darker	dot)	
ay	Dot	High bright dot: Visi	ble through 2% ND filter at [Data]=(00)h	
Display	defect	Low bright dot: Visi	ble through 5% ND filter at [Data]=(00)h	
		Dark dot: Appear da	ark through white display at [Data]=(97)h	
		Invisible through 5%	ND filter at [Data]=(00)h	ignored
	Dirt	Point-like uneven br	ightness (white stain, black stain etc)	Invisible through 1% ND filter
_		Point-like	0.25mm< φ	N=0
Quality	Faraina		0.20mm< φ ≦0.25mm	N≦2
g	Foreign particle		φ ≦0.20mm	Ignored
en G	particle	Liner	3.0mm <length 0.08mm<width<="" and="" td=""><td>N=0</td></length>	N=0
Screen			length≦3.0mm or width≦0.08mm	Ignored
S	Others			Use boundary sample
	Outers			for judgment when necessary

 $\phi(mm)$: Average diameter = (major axis + minor axis)/2 Permissible number: N

Table 1

Table					
Area	High bright dot	Low bright dot	Dark dot	Total	Criteria
Α	0	2	2	2	4 or less neighboring defective dots are counted as one. Permissible distance between same color bright dots : 3 mm or more
В	1	2	2	3	
Total	1	2	2	3	

<Landscape model>

Division of A and B areas B area: Active area

Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure)

ORTUS TECHNOLOGY CO.,LTD.

SPECIFICATIONS № **TLM***

Issue Nov. 19, 2014

11.2 Screen and Other Appearance

Testing conditions

Observation distance 30cm

Illuminance 1200~2000 lx

	Item	Criteria	Remark
Polarizer	Flaw Stain Bubble Dust Dent	Ignore invisible defect when the backlight is on.	Applicable area: Active area only (Refer to the section 3.2 "Outward form")
	S-case	No functional defect occurs	
	FPC cable	No functional defect occurs	
	Connector	No functional defect occurs	

SPECIFICATIONS № **TLM***

12. Reliability Test

	Test item	Test condition	number of failures /number of examinations
	High temperature storage	Ta=80° C 240hrs	TBD
	Low temperature storage	Ta=(-30° C) 240hrs	TBD
Durability test	High temperature & high	Ta=60° C, RH=90% 240hrs	TBD
ty t	humidity storage	non condensing **	
pilli	High temperature operation	Tp=70° C 240hrs	TBD
ura	Low temperature operation	Tp=(-20° C) 240hrs	TBD
	High temp & humid operation	Tp=40°C, RH=90% 240hrs	TBD
	riigii terrip & ridiriid operation	non condensing ×	
	Thermal shock storage	(-30)←→80° C(30min/30min) 100 cycles	TBD
sst	Overforce discharge to t	C=250pF, R=100Ω, V=±(12)kV	TBD
al te	Surface discharge test	Each 5 times of discharge in both polarities	
nte	(Non operation)	on the center of screen with the case grounded.	
Mechanical environmental test	Vibration to at	Total amplitude 1.5mm, f=10~55Hz, X,Y,Z	TBD
iroı	Vibration test	directions for each 2 hours	
env		Use ORTUS TECHNOLOGY original jig	TBD
ale		(see next page)and make an impact with	
anic	Impact test	peak acceleration of 1000m/s2 for 6 msec with	
che	•	half sine-curve at 3 times to each X, Y, Z directions	
Me		in conformance with JIS 60068-2-27-2011.	
<u></u>		Acceleration of 19.6m/s ² with frequency of	TBD
tes	Packing vibration-proof test	10→55→10Hz, X,Y, Zdirection for each	
ng		30 minutes	
Packing test	5 11 1 1 1	Drop from 75cm high.	TBD
Ä	Packing drop test	1 time to each 6 surfaces, 3 edges, 1 corner	

Note:Ta=ambient temperature

Tp=Panel temperature

% The profile of high temperature/humidity storage and High Temperature/humidity operation (Pure water of over 10M Ω ·cm shall be used.)

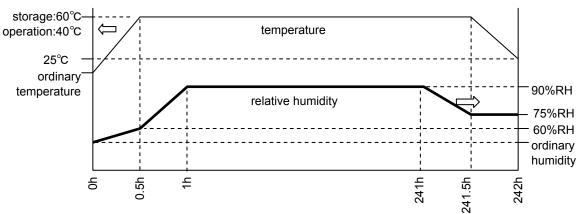
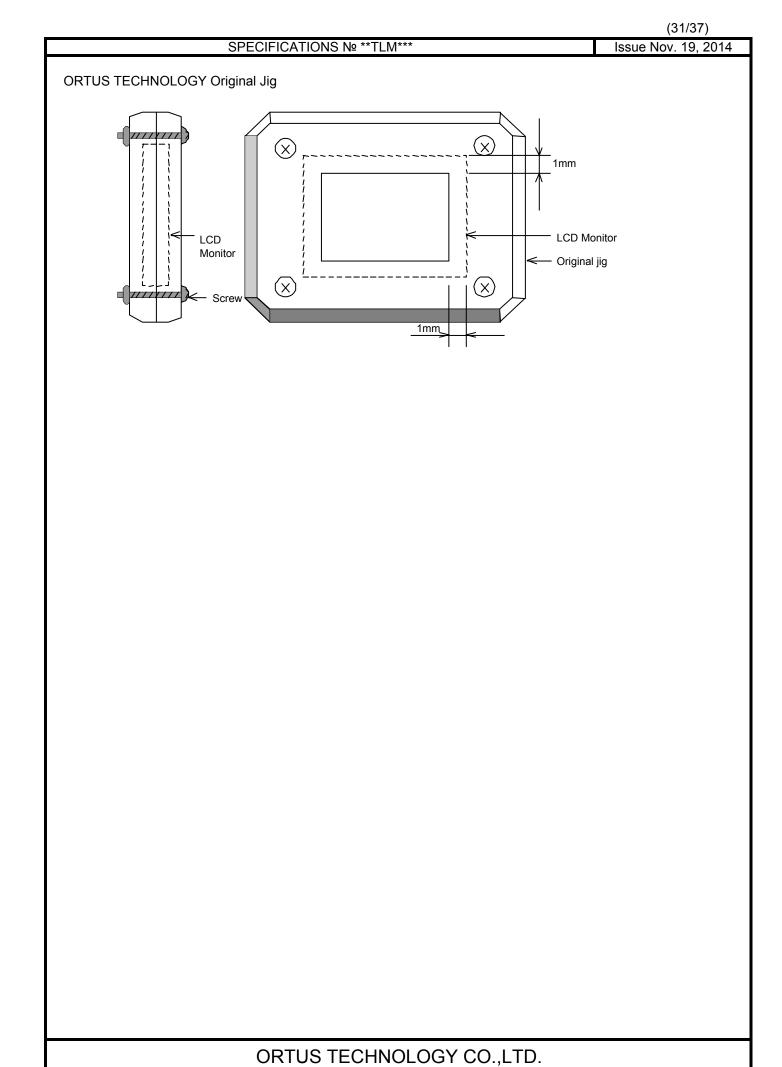



Table2.Reliability Criteria

Measure the parameters after leaving the monitor at the ordinary temperature for 24 hours or more after the test completion.

item	Standard	Remarks
Display quality	No visible abnormality shall be seen.	As criteria of
		"11 Criteria of Judgment".
Contrast ratio	40 or more	

(32/37)

SPECIFICATIONS № **TLM***	Issue Nov. 19, 2014
13. Packing Specifications	
To. I defining epoconications	
TBD	
ORTUS TECHNOLOGY CO.,LTD.	

14. Handling Instruction

14.1 Cautions for Handling LCD panels

Caution

- (1) Do not make an impact on the LCD panel glass because it may break and you may get injured from it.
- (2) If the glass breaks, do not touch it with bare hands.(Fragment of broken glass may stick you or you cut yourself on it.
- (3) If you get injured, receive adequate first aid and consult a medial doctor.
- (4) Do not let liquid crystal get into your mouth.
 (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.
- (5) If liquid crystal adheres, rinse it out thoroughly.
 (If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor.
- (6) If you scrap this products, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside.
- (7) Do not connect or disconnect this product while its application products is powered on.
- (8) Do not attempt to disassemble or modify this product as it is precision component.
- (9) For protection your circuit, we recommend you to add excess current protection circuit to power supply.

Caution

This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.

14.2 Precautions for Handling

- Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean.
 Do not touch the surface of the monitor as it is easily scratched.
- Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge. Designate an appropriate operating area, and set equipment, tools, and machines properly when handling this product.
- Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.
- 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.
- 5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.
- Do not stain or damage the contacts of the connector.
 FPC cable needs to be inserted until it can reach to the end of connector slot.
 During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion.
 Otherwise, it may cause poor contact or deteriorate reliability of the connector.
- 7) Peel off the protective film on the TFT monitors during mounting process. Refer to the section 14.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.

14.3 Precautions for Operation

- Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures.
- 2) When turning off the power, turn off the input signal before or at the same timing of switching off the power.
- 3) Do not plug in or out the connector while power supply is switch on. Plug the connector in and out while power supply is switched off.
- 4) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.
- Do not display a fixed image on the screen for a long time.
 Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time.
 Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.

	SDECIFICATIONS No **TI M***	
	SPECIFICATIONS № **TLM***	ISSUE NOV. 19, 2014
14.4 Storage Condition for S	hipping Cartons	
Storago on vironment		
Storage environment • Temperature	0 to 40°C	
 Humidity 	60%RH or less	
Tidifficity	No-condensing occurs under low temperature with high humi	etatic precautionary measures ETFT monitors from er tips ork area's floor.
 Atmosphere 	No poisonous gas that can erode electronic components and	
Almosphere	materials should be detected.	or wiring
 Time period 	3 months	
 Unpacking 	To prevent damages caused by static electricity, anti-static pr	rature with high humidity condition. onic components and/or wiring ectricity, anti-static precautionary measures implemented. It to prevent the TFT monitors from s. onductive finger tips emented to work area's floor.
- P 0	(e.g. earthing, anti-static mat) should be implemented.	•
 Maximum piling up 	(7) cartons	
14.5 Precautions for Peeling		
14.01 recadiions for recining	on the Frotestive min	
	onment and work method are recommended to prevent the TFT roll of dust when peeling off the protective films.	nonitors from
static damage of admesion	To dust when pecing on the protective inns.	
A) Work Environment		
	6RH, Temperature15 to 27 °C	
b) Operators should we	ear conductive shoes, conductive clothes, conductive finger tips	
	straps. Anti-static treatment should be implemented to work area	a's floor.
	d against outside dust with sticky floor mat laid	
at the entrance to el	iminate dirt.	
D) We I Meller I		
B) Work Method		
	TBD	
	ORTUS TECHNOLOGY CO.,LTD.	

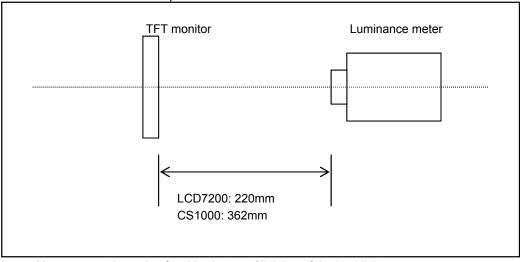
APPENDIX

Reference Method for Measuring Optical Characteristics and Performance

1. Measurement Condition

Measuring instruments: CS1000 (KONICA MINOLTA) , LCD7200(OTSUKA ELECTRONICS) ,EZcontrast160D (ELDIM)

Driving condition: Refer to typical rating of the section "Recommended Operating Conditions".

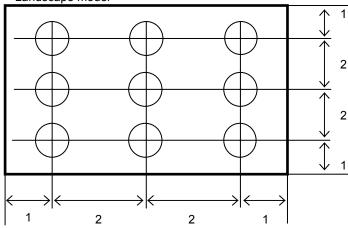

Measured temperature: 25°C unless specified

Measurement system: See the chart below. The luminance meter is placed on the normal line of

measurement system.

Measurement point: At the center of the screen unless otherwise specified

Dark box at constant temperature



Measurement is made after 30 minutes of lighting of the backlight.

Measurement point: At the center point of the screen

Brightness distribution: 9 points shown in the following drawing.

<Landscape model>

Dimensional ratio of active area

Backlight IL=25mA

SPECIFICATIONS № **TLM***	Issue Nov. 19, 2014
OF ECH TO A HONO INE TEN	13305 1107, 13, 2014

2. Test Method

Notice	Item	Test method	Measuring instrument	Remark
	Response time	Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white.	LCD7200	Black display [Data]=(00)h White display [Data]=(FF)h TON
		White Black White		Rise time
		White 100%		TOFF Fall time
		90%		
		10% ————————————————————————————————————		
2	Contrast ratio	TON TOFF Measure maximum luminance Y1([Data]=(FF)h) and	CS1000	
		minimum luminance Y2([Data]=(00)h) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 8mmφ		
3	Viewing angle Horizontalθ Verticalφ	Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is (10).	EZcontrast160D	
4	White chromaticity	Measure chromaticity coordinates x and y of CIE1931 colorimetric system at [Data] = (FF)h Color matching faction: 2°view	CS1000	
5	Burn-in	Visually check burn-in image on the screen after 2 hours of "window display" ([Data]=(FF)h/(00)h).		At optimized VCOMDC
6	Center brightness	Measure the brightness at the center of the screen.	CS1000	
7	Brightness distribution	(Brightness distribution) = 100 x B/A % A: max. brightness of the 9 points	CS1000	